Announcements

- Readings:
 - Chapter 1
 - Chapter 2 (2.1-2.10)
- Multisim tutorial: if enough interest (GoPost)
- Office Hour after this lecture:
 - Wednesday 2:00-3:00 pm @ EE 218

Intrinsic Carrier Concentration

Can think of holes and electrons like chemical species.

$$e^- + h^+ \Leftrightarrow \emptyset$$

 In equilibrium, the ratio of the product of the concentrations of the reactants to the product of the concentrations of the products is equal to an equilibrium constant

$$\frac{pn}{4N} = K$$

- -p: concentration of holes
- n : concentration of electrons
- N : concentration of atoms

$$pn = 4NK \equiv n_i^2$$

Intrinsic Carrier Concentration

• Intrinsic carrier concentration n_i^2 only depends on temperature (T) and material (B, E_G)

$$n_i^2 = BT^3 \exp\left(-\frac{E_G}{kT}\right) \text{ cm}^{-6}$$

- $-E_G$: band gap energy of the material, in eV. E_G is the minimum energy to break the covalent bond and excite a free electron.
- -k: Boltzmann's constant, 8.62 x 10^{-5} eV / K
- T: Absolute temperature in K (Kelvin) $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$
- B: material-dependent parameter $K = ^{\circ}C + 273.15$

Intrinsic Carrier Concentration

 Example: Calculate intrinsic carrier concentration of Si at 300 K (RT) and 1200 K.

$$n_i^2 = BT^3 \exp\left(-\frac{E_G}{kT}\right) \text{ cm}^{-6}$$

- For Si: $E_G = 1.12 \text{ eV}$, $B_{Si} = 2.23 \times 10^{31} \text{ K}^{-3} \text{ cm}^{-6}$

- Silicon valence electron density: $\sim 10^{23} \text{cm}^{-3}$
- Fraction of bonds broken to excite a free electron
 - $\sim 10^{-13}$ for T = 300 K Small fraction!
 - $\sim 10^{-5}$ for T = 1200 K

Energy Band Model of Semiconductors

Electron States

- Quantum Physics: 1 electron occupies 1 state
- Crystal Structure of a material produces ranges of allowed and disallowed energy states for electrons.
- Electrons fill allowed states: starting with the lowest energies and filling upwards.

Energy Band Model of Semiconductors

Conduction – Parking Lot Analogy

- Neither empty bands nor full bands contribute to conduction
- Conduction arises from partially filled bands (electrons in conduction band and holes in valence bands)

At T = 0 K

- Upper floor empty no traffic
- Lower floor full no traffic

At T > 0 K

- One car move to the top floor;
 leaves one vacancy in the lower floor
- Both the car and the vacancy can move – traffic

Car – electron; vacancy – hole; traffic – conduction Upper floor – conduction band; lower floor – valence band

Energy Band Model – Intrinsic Silicon

- In intrinsic silicon, there's one free hole per excited free electron => n=p . By definition, $n=p=n_i$ (Intrinsic carrier density)
- n_i depends only on temperature and material
 - Higher T, n_i higher (more thermal energy, easier to excite electrons)
 - Larger Band gap, n_i lower (electrons harder to "jump" to conduction band)

Conduction in Intrinsic Silicon

Conduction is due to both electrons and holes in a semiconductor

niconductor $\sigma = qn\mu_n + qp\mu_p$ Electron density Hole density $\mu_n > \mu_p$ Electron mobility Hole mobility

• Intrinsic silicon: $\sigma = q(\mu_n + \mu_p)n_i$

Conduction in Intrinsic Silicon

$$J_n = qnu_n E$$

$$J_p = qpu_p E$$

$$J = J_n + J_p.$$

$$J = \sigma E$$

electron density n [cm⁻³]

hole density p [cm⁻³]

$$\sigma = q(\mu_n n + \mu_p p)$$

Intrinsic Si @ RT:
$$\sigma = q(\mu_n + \mu_p)n_i$$

$$= (1.6 \times 10^{19} \text{C}) \left([1000 + 400] \frac{\text{cm}^2}{\text{Vs}} \right) (1 \times 10^{10} \text{cm}^{-3})$$

$$= 2.2 \times 10^{-6} \text{ S/cm}$$

Extrinsic Semiconductor

 Conductivity in intrinsic silicon is low in normal conditions (insulator).

 Trace amounts of impurities (dopants) are added to adjust the conductivity.

Two types of substitutional dopants:

Group V elements, P, As, Sb (donor)

Group III elements, B, Al, Ga, In (acceptor)

5:	B Boron	C Carbon	N Nitrogen	O Oxygen
IIB	13 26,9815 Al Aluminum	28.086 Si Silicon	15 30,9738 P Phosphorus	32.064 S Sulfur
30 65.37 Zn Zinc	Ga Gallium	Ge Germanium	33 74.922 As Arsenic	34 78.96 Se Selenium
48 112.40 Cd Cadmium	49 114.82 In Indium	50 118.69 Sn Tin	51 121.75 Sb Antimony	52 Te Tellurium
80 200.59 Hg Mercury	81 204.37 Tl Thallium	82 207.19 Pb Lead	83 208.980 Bi Bismuth	Polonium

Extrinsic Semiconductor - Donor

- Group V elements (donors)
 - Have one more outer electrons than Si (5 vs. 4)
 - Can donate one free electron, and become positively charged (charge neutrality condition).

Extrinsic Semiconductor - Acceptor

- Group III elements (acceptors)
 - Have one less outer electrons than Si (3 vs. 4)
 - Can accept one electron (donate a hole), and become negatively charged (charge neutrality condition).

Conduction in Intrinsic Silicon

Typical Doping Range

- Typical doping range:
 - Minimal chemical / mechanical changes (trace impurity)
 - Major changes in electrical conductivity

Extrinsic Semiconductors– Carrier Density

- The carrier density (n, p) in extrinsic semiconductors is governed by two laws:
 - Law of Mass Action (equilibrium condition):

$$np = n_i^2$$

– Charge Neutrality Condition:

$$N_D + p - N_A - n = 0$$

Extrinsic Semiconductors

Carrier Density (n-type)

- Silicon doped with donors with density N_D ($N_A = 0$)
 - Solve $np = n_i^2$ and $N_D + p n = 0$
 - Eliminate p:

$$N_D + \frac{n_i^2}{n} - n = 0 \Rightarrow n^2 - nN_D - n_i^2 = 0$$

$$- \text{Solve: } n = \frac{N_D + \sqrt{N_D^2 + 4n_i^2}}{2}, p = \frac{n_i^2}{n}$$

- Most of the time: $N_D \gg n_i$, thus $n \cong N_D$, $p \cong \frac{n_i^2}{N_D} \Rightarrow n \gg n_i \gg p$, the semiconductor is called "n-type"
- Electrons: majority carrier; Holes: minority carrier

Extrinsic Semiconductors

Carrier Density (p-type)

- Silicon doped with acceptors with density N_A ($N_D = 0$)
 - Solve $np = n_i^2$ and $p N_A n = 0$
 - Eliminate *n*:

$$p-N_A-\frac{n_i^2}{p}=0 \Longrightarrow p^2-pN_A-n_i^2=0$$
 Negative solution tossed out
$$-\text{Solve: }p=\frac{N_A+\sqrt{N_A^2+4n_i^2}}{2}, n=\frac{n_i^2}{p}$$

- Most of the time: $N_A \gg n_i$, thus $p \cong N_A$, $n \cong \frac{n_i^2}{N_A} \Rightarrow p \gg n_i \gg n$, the semiconductor is called "p-type"
- Holes: majority carrier; Electrons: minority carrier